STATUS OF SEA LAMPREY CONTROL IN LAKE ONTARIO

Adult Sea Lamprey:

Figure 1. Index estimates with 95% confidence intervals (vertical bars) of adult sea lampreys, including historic precontrol abundance (as a population estimate) and the three-year moving average (line) with 95\% CIs (shaded area). The population estimate scale (right vertical axis) is based on the index-to-PE conversion factor of 2.37 . The adult index in 2017 was 13,000 with 95% confidence interval ($9,800-15,000$). The point estimate was above the target of 11,000 . The index target was estimated as the mean of indices during a period with acceptable marking rates (19931997).

Figure 2. LEFT: Estimated index of adult sea lampreys during the spring spawning migration, 2017. Circle size corresponds to estimated number of adults from mark-recapture studies (blue) and model predictions (orange). All index streams are identified. RIGHT: Maximum estimated number of larval sea lampreys in each stream surveyed during 1995-2012. Tributaries composing over half of the lake-wide larval population estimate are identified (Salmon 1,400,000; Little Salmon 970,000; Credit 590,000; Black 470,000).

- The 3-year average adult index estimate is meeting the target and the adult index has been holding steady over the past 5 years.
- There are no known sources of concern to report. The Niagara River and Niagara Bar were evaluated in 2009 and harbor very low density populations of sea lamprey larvae. This source will continue to be monitored for increased production.

Lake Trout Marking and Relative Abundance:

Figure 3. Number of A1 marks per 100 lake trout $>431 \mathrm{~mm}$ from standardized assessments plotted against the sea lamprey spawning year, including the three-year moving average (line) with 95% CIs (shaded area). The marking rate of 1.4 in spawning year 2016 met the target of 2 A 1 marks per 100 lake trout $>431 \mathrm{~mm}$ (horizontal line). A second x axis shows the year the lake trout were surveyed.

Figure 4. Lake trout relative abundance plotted against sea lamprey spawning year, including the three-year moving average (line) with 95% CIs (shaded area). $\mathrm{CPE}=$ fish $/ \mathrm{km} /$ net night of lean lake trout $>431 \mathrm{~mm}$ (17") total length.

- The 3-year average marking rate is meeting the target and marking rates have been decreasing over the past 5 years.
- Lake trout abundance has been holding steady over the past 5 years.
- Marking rates on steelhead and chinook have been increasing and are a concern.
- The Commission, in collaboration with management agencies, is building lake trout marking and abundance databases to further advance the assessment and guidance of the program.

Lampricide Control - Abundance vs. Field Days, TFM, and Bayluscide:

Figure 5. Index of adult sea lampreys (blue lines) and number of control field days (orange bars), TFM used (kg active ingredient; yellow bars), and Bayluscide used (kg active ingredient; purple bars). Field days, TFM, and Bayluscide are offset by 2 years (e.g., field days, TFM, and Bayluscide applied during 1985 is plotted on the 1987 spawning year, when the treatment effect would first be observed in adult sea lamprey populations).

- 2017 lampricide treatments are ongoing.
- 10 tributaries were treated during 2014, 19 during 2015, and 10 during 2016 (2016 to 2018 spawning years).
- Control effort has remained steady for more than 25 years and contributed to keeping the adult index at or near target.

